a2 United States Patent

US009092255B2

(10) Patent No.: US 9,092,255 B2

Yamauchi et al. (45) Date of Patent: Jul. 28, 2015
(54) MULTI-CORE PROCESSOR SYSTEM, (56) References Cited
COMPUTER PRODUCT, AND CONTROL
METHOD FOR INTERRUPT EXECUTION U.S. PATENT DOCUMENTS
. . .o 6,108,744 A 8/2000 Lebee
(71) Applicant: FUJITSU LIMITED, Kawasaki-shi, 6.845.419 Bl 12005 Moyer
Kanagawa (JP) 7,206,884 B2* 4/2007 Kimelmanetal. 710/265
2005/0177668 Al* 82005 Kimelmanetal. ... 710/264
(72) Inventors: Hiromasa Yamauchi, Kawasaki (JP); 2006/0174246 Al 8/2006 Tamura et al.
Koichiro Yamashita, Hachioji (JP); (Continued)
Takahisa Suzuki, Kawasaki (JP); Koji
Kurihara, Kawasaki (JP) FOREIGN PATENT DOCUMENTS
(73) Assignee: FUJITSU LIMITED, Kawasaki (JP) CN 1811718 A 8/2006
Jp 11-272632 10/1999
(*) Notice: Subject to any disclaimer, the term of this P 2000-56986 2/2000
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 407 days. OTHER PUBLICATIONS
(21) Appl. No.: 13/628,709 International Preliminary Report on Patentability issued Oct. 11,
. 2012 (English Translation mailed Nov. 1, 2012) in corresponding
(22) Filed: Sep. 27, 2012 International Patent Application No. PCT/JP2010/055711.
(65) Prior Publication Data (Continued)
US 20150081942 49 Mor 16, 2015 Primary Examiner — Glenn A Auve
ar. 155 (74) Attorney, Agent, or Firm — Staas & Halsey LLP
Related U.S. Application Data (57) ABSTRACT
(63) Continuation of application No. PCT/JP2010/055711, A multi-core processor system includes a given configured to
filed on Mar. 30, 2010. queue an interrupt process of a software interrupt request to
the given core, and execute queued processes in the order of
(1) Int. Cl. queuing at the given core; execute preferentially an interrupt
Go6l’ 13/24 (2006.01) process of a hardware interrupt request to the given core over
GOGF 9/48 (2006.01) a process under execution at the given core; determine
(52) US.CL whether the software interrupt request is a specific software
CPC ., GO6F 9/4812 (2013.01); GOGF 13/24 interrupt request; and perform control to preferentially
(2013.01) execute the interrupt process without queuing, upon deter-
(58) Field of Classification Search mining that the software interrupt request is the specific soft-
CPC oo GO6F 13/24, GOG6F 9/4812 ware lnterrupt request.
USPC ot 710/260, 264-266

See application file for complete search history.

6 Claims, 14 Drawing Sheets

SLAVE CPU 102

EN DETECTEDZ,

FROM MASTER GPU 101

INTERRUPT HANDLER
OF SOFTWARE INTERRUPT

HIGH PRIORITY

TASK
UNDER EXECUTION=
PROCESS ALLOWING
INTERRUPT?,

A $1408
TNTER-PROCESSOR NO

INTERRUET COMMUNICATION

.| USE-CASE
..........................

REQUEST-PROCESS HAVING

SET VALUE FOR SOF TWAR
INTERRUPT REQUEST IN HARDWARE |

81413]
E
[
INTERRUPT REGISTER

HYPERVISOR 112

DETECT HARDWARE INTERRUPT REQUEST 1414 "

TNTERRUPT AND SAVI
JASK UNDER EXECI
EXECUTE SOFTW.
INTERRUPT HANI
$1416

ProcessiD=1

HAS
SOFTWARE INTERRUPT
HANDLER ENDED?

TO MASTER CPU 101

b

s1422 |

YES, 51423
SEND NOTIGE OF COMPLETION TO MASTER CPU SLAVEOS 122

NO

US 9,092,255 B2

Page 2
(56) References Cited Jp 2010-152458 7/2010
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS
2007/0124523 Al 5/2007 Shimizu et al. Japanese (.)fﬁ?e Action mailed Mar. 11, 2014 in corresponding Japa-
2009/0132744 Al* 5/2000 Craske ..coooooovvvrvvvveoneee 7107265 ~ Dese Application No. 2012-507955. _
International Search Report of PCT/JP2010/055711 mailed May 11,

2010.

FOREIGN PATENT DOCUMENTS Takashi Hirokazu et al., “Linux kernel 2.6 analysis”, Soft Bank

Jp 2001-229031 8/2001 Creative Corp., Nov. 30, 2006, pp. 62-63.

IP 2003-44291 2/2003 Chinese Office Action issued on Oct. 8, 2014 in corresponding Chi-
Jp 2007-141155 6/2007 nese Patent Application No. 201080065900 4.

Jp 2007-148746 6/2007

Jp 2009-301116 12/2009 * cited by examiner

US 9,092,255 B2

Sheet 1 of 14

Jul. 28, 2015

U.S. Patent

44"

AHOW3IN
ol A3YvHS

—~ €01

10l

— L}

T4

3ADIA3Q O/
A —— mo% 9
{ {
431803 ¥31S193d
JHOVO 3JHOVO
0L — NdD IAVIS NdD H3A1SVIN
AN HOSIAY3dAH HOSIAYIdAH
2zl — SO 3IAVIS SO Y31SVN
el — H¥37NA3HOS H31NAIHOS

$8320dd

NIG0D3d 34NL0Id DONINO

— L€l

$8300¥dd INSD

243

I\

SSIHO0Ud NI
NOILONAO¥d3N
FHNLOId ONINOW

001

1 Ol

US 9,092,255 B2

Sheet 2 of 14

Jul. 28, 2015

U.S. Patent

AYOW3N
148" a3dvHS

321A3Q o/ —~ €01
<___ =
501
G _ 9 D
0L —
\l ¥3L1S193y ¥31S193Y < INI
IHOVD JHOVD
NI
NdD IAVIS NdD HIALSYW — 10l
v/. HOSIAYIdAH « HOSIAYIdAH ~ 11l
A
zzZL — SO IAVYIS SO Y3ILSVW - 12}
ZeL H37INA3IHOS H3IINA3IHOS — L€l
(43NaNvH
LdNIH3LNI IHYMAHVYH
: ¥IAING 1FNYd HONOL
SS3004d ¥IAVId
SS300¥d INS

A4

34

001

¢ 9Old

(N

JdvMHEOA
1Sv4d

US 9,092,255 B2

Sheet 3 of 14

Jul. 28, 2015

U.S. Patent

AHOW3IN
ol Ad3dvHS

— £0l

— 10l

— Ll

— LEL

—— 3DIA3A O/
A movr 0
¢ {
ISENRSDEL ¥y318193H
JHOVD IHOVO
col — NdD 3AVIS NdO Y31SVIN
cll — HOSINYTJAH HOSIAYIdAH
A4S SO 3AVTIS SO 431SVW
cEL — H371NAIHOS ¥31NA3HOS
(437ONVH

§83004dd

ONIJO23d FdN.10id ONIAOW

A4

1dNYHIINI FHYMAHVYH
H3IAIRA 1INVd HONOL

SS300Hd H3AV1d

$53004d INO

(34"

00l

¢ 9old

[

qdvmMmyOd
1Sv4d

U.S. Patent

131

121

111

101

103

Jul. 28, 2015 Sheet 4 of 14 US 9,092,255 B2
FIG.4 100
SCHEDULER SCHEDULER | 132
MASTER OS SLAVE OS — 122
HYPERVISOR HYPERVISOR 112
MASTER CPU SLAVE CPU — 102
CACHE CACHE
REGISTER REGISTER
{ ‘ >
105
I/0 DEVICE SHARED 104
MEMORY
PROCESS USE-CASE
TABLE TABLE
)i

\

500

U.S. Patent Jul. 28, 2015 Sheet 5 of 14 US 9,092,255 B2

FIG.5

FuncA: FORCED JUMP
FuncB: HANDLER PROCESS

— 500

US 9,092,255 B2

Sheet 6 of 14

Jul. 28, 2015

U.S. Patent

004 —

mo_o No_m movo No.m
37 1INN o371 1INN
» -1O041INOD ONILNO3IX3 » TOHINOD » ONILNO3X3
NOILNO3X3 aNoOO3s NOILND23X3 aNoo2o3s
A 7 }
LINN ONI LINN ONI 1INN LINN ONI LINN ONI L1INN
“NINY3130 [« -NINY3133d ONILND3IX3 -NINY3 130 [« -NIWY3133d ONILNOIX3
ALI™OIAd 1S3ND3d 1S4 ALIHOIdd 1S3N03d 1SHid
]] J]]]
09 €09 109 $09 €09 109
] J] H
458 acl 32" 74"
]]
20l LOL

9'Ol1d

US 9,092,255 B2

Sheet 7 of 14

Jul. 28, 2015

U.S. Patent

AHON3IN
48] a3ayvHs

3IDIA3C O/l — €0l
—
sol
1S3no3y) 9
1dNYY3LNI A
IYVYMAYYH H e
331v4 (S)
> H3A1S193Y H3LSID3Y o
Y JHOVD IHOVD
NI 1S3INO3Y
NdD JAVIS - ¢0l Lok 1 NdD YALSYIN 1dN¥Y3LNI
1 mm<>A>m_m<I
HOSIAYIdAH & b4 HOSIAYIdAH F
L Nzl
NOILYOINNWWOD |
HOSSI00Nd SO 3IAVIS 221 SO H3LSVW ¥4
-431INI YO LINOW
{31NA3HOS 21n53x%3 (1) ¥3T1NA3HOS
zel / 1eL/
3109
HIIANVH [HITANYH -3x3 (g)
LdNYYILINI IHVYMLA0S NOLLYOINNWINOD 1dNYYEILINI FHVYMANVH
JAVS (9) N_OwmeMuww_n_
-431NI (¥

[Ad T

3N3ND-AAvY3H

4%

b 1Ol

ANIND-AAVIY

U.S. Patent Jul. 28, 2015 Sheet 8 of 14 US 9,092,255 B2

- e e = e = - . e e e e e e e e e e e e am e e em e R R S e e e e e -y

DETECT HARDWARE INTERRUPT

REQUEST S801

=
>
(4]
uti
m
X
O
&)

121 INTERRUPT AND SAVE TASK UNDER
EXECUTION

EXECUTE HARDWARE INTERRUPT
151 HANDLER OF HARDWARE
INTERRUPT REQUEST

PROCESS | _
TABLE

..
S

IDENTIFY CPU TO WHICH
INTERRUPTED TASK IS ASSIGNED

IDENTIFIED CPU
=MASTER CPU?

wn

LAVE CPU

U.S. Patent

FROM MASTER

CPU 101

TO MASTER
CPU 101

«-

.
e et e, e e, E , E e, e — - ——— - —————— e — e - - - - m—————— -

Jul. 28, 2015 Sheet 9 of 14

US 9,092,255 B2

5808

HAS
INTER-PROCESSOR
INTERRUPT COMMUNICATION
BEEN DETECTED?

P, e e — -

= ——— -

NO

5((10

USE-CASE TABLE

S80%8

SOFTWARE
INTERRUPT HANDLER
OF SOFTWARE
INTERRUPT REQUEST=
PROCESS HAVING HIGH
PRIORITY?

[S810

v [8814

SET VALUE FOR SOFTWARE
INTERRUPT REQUEST IN
HARDWARE INTERRUPT

REGISTER
-

Y

SEND SOFTWARE
INTERRUPT REQUEST

DETECT HARDWARE INTERRUPT REQUEST

S811

A 4

INTERRUPT AND SAVE TASK
UNDER EXECUTION

\8812

A

REGISTER SOFTWARE
INTERRUPT HANDLER

INTO READY-QUEUE
142

¥ S815

EXECUTE SOFTWARE INTERRUPT
HANDLER

EXECUTE SOFTWARE
INTERRUPT HANDLER

SOFTWARE
INTERRUPT HANDLER
ENDED?

(8818

SEND NOTICE OF COMPLETION TO MASTER CPU

- D = ——————— - ———— = ——— = == ——— = - - -y

U.S. Patent Jul. 28, 2015 Sheet 10 of 14 US 9,092,255 B2

FIG.10

FuncA: FORCED JUMP, INTERRUPTION NOT ALLOWED
FuncB: HANDLER PROCESS, INTERRUPTION ALLOWED
FuncC: FORCED JUMP, INTERRUPTION NOT ALLOWED

— 1000

TASK A : -, INTERRUPTION ALLOWED
TASK B : -, INTERRUPTION ALLOWED
TASK C: -, INTERRUPTION NOT ALLOWED

US 9,092,255 B2

Sheet 11 of 14

Jul. 28, 2015

U.S. Patent

AJOW3NW
POl d3yvHS

32IA3Q O/l — €0l
e
G0l
1s3no3yd] e
1dNSEY3LINI A
JYVYMANVYH e 9
33v4 ()
> ¥31S193Y ¥3lsio3d »
JHOVD IHOVD
1S3NO3Y
NdO IAVIS —-¢0t LOL 4 NdD Y3LSYW LdNYYILNI
1 IHVYMAYVH
HOSIAYIJAH > s . HOSIAYIdAH ()
N Nzl
NOILVOINNIWWNOD L
HOSSI0NY SO IAVIS 221 Lzt SO ¥ILSYW
-431NI HOLINOW
d31NA3HOS 21n53%3 (1) d37NA3HOS
cel J 1€l J
3L1no
H3I1ANVH [H3TANVH -3X3 (e)
LdNYHIINI IHYMLA0S NOILYDINAWNOD 1dNYHILNI FHYMAHVH
JAVS (9) mOwwm_OnAqu_n_
-43LNI (P
g SVl N VISVL 2AVS (2)
. aamo1y N
zbl ININD-AAVIH NOLLANSSSLNI 1y - ININO-AQVIY
001 L1 ODIld

US 9,092,255 B2

Sheet 12 of 14

Jul. 28, 2015

U.S. Patent

AHOW3IN
14018 ag3dvHS

30IA3A O/l

— €01

S0l
G _ 9 D
> ¥31S193y ¥31s193y < IN
IHOVD IHOVD

1S3no3ay
0=qIsseo0.d (5) | ZolL — Nd9o IAVIS Lot 4 NdD Y3LSYW 1dNYY3INI
IYVYMAHYH

rAN I HOSIAYMIdAH NOILVS HOSIAYIAJAH (1)

-INNWWOD s
SO AAVIS H0SS300dd SO HALSVYN
HOLINOW
¥371NA3IHOS ¥31NA3IHOS
zeL/ Lel/
aino
|| H3TANVH -3X3 (€)
H0SS300Hd
O MSVL “HIINI (v) V NSV ZAVS ()
3N3NO-AQY3Y J3moT1v LON 3N3ND-AAYIH
A4 NOILdNEHILNI Ipl —
e
00t ¢l 9Old

US 9,092,255 B2

Sheet 13 of 14

Jul. 28, 2015

U.S. Patent

AHOW3N
0L a3uvHS

32I1A3Q Ol L ¢01
< =
S0l
< v : D
2014 —
> ¥3LSIOTY < 1IN Y¥3Lsioay < INI
3HOVD I 3HOVD
1S3NOIY
= LdMyILNI
+=ai SS99%5 NdD 3AVIS SUYMONYH NdD H3LSYW ~ 101
354 ‘L=al
- $S300¥d N
AN HOSIAYIDAH 52084, HOSIAYIJAH LLL
- SO 3AVIS SO ¥3LSYIW 121
AR
sop ~ Y¥31NAIHOS ¥31NAIHOS 161
HITANVH 31n03x3 (6) HITANVH
LdNYYILINI THYMLIOS LdNYYILNI THYMAUYH
O MSVL V 3SVL
Zvl ININO-AAV3Y a3anN3 (9) byl — ININO-AQvIH 7
<
001 el oOld

U.S. Patent Jul. 28, 2015 Sheet 14 of 14 US 9,092,255 B2

& SLAVE CPU 102

D || m—m === eeme e e mm oo mmmmm oo e mmmm—mmo-oo———o—————— oo I

o u HYPERVISOR 112k

ol S1408 i

Wi INTER-PROCESSOR NO "

t INTERRUPT COMMUNICATION ‘ i

<y BEEN DETECTED? "

= N s USE-CASE 1000]

=0 yESLT TABLE l

[}

£ ::

h SOFTWARE $1409 i

" INTERRUPT HANDLER NO t

i OF SOFTWARE INTERRUPT f

" REQUEST=PROCESS HAVING "

h HIGH PRIORITY? I

| |

I y 1

:: SEND ::

SOFTWARE

! TASK 1410 $1419~ |\TERRUPT |

. UNDER EXECUTION= REQUEST "

" PROCESS ALLOWING [S1411 m——————

i INTERRUPT? - "

I ProcessID=0 I I

i YES T e R n

1} '-' ‘.‘ Iy

1 . 1]

") YES } t

u [S1413) i h

v SET VALUE FOR SOFTWARE] o

| INTERRUPT REQUEST IN HARDWARE [i

:; INTERRUPT REGISTER n

:I _______________ # -------------- H --_-----_-----:'-"'_‘ ------------ l:

! [DETECT HARDWARE INTERRUPT REQUEST }-s1414 -~ !

i Y- mm=------- im------ il Almininiaiael

1| INTERRUPTAND SAVE | | H REGISTER |u

% | TASK UNDER EXECUTION S1415 $14201 sorFTwaARE |

:: ¥ S1417 5 HAS INTERRUPT ::

" [EXECUTE SOFTWARE 2 TASK UNDER HANDLER |,

I | INTERRUPT HANDLER NO EXECUTION INTO READY- u

! Us1416 ENDED OR HAS TASK QUEUE T

it SWITCHING H h

! SOFTWARE [

1 ' INTERRUPT |

f ' YES|]S1418 HANDLER |

1 [| 1]

;; ProcessID=1 s1421

] P " o n

5! y !

S "o S1422 n

o SOFTWARE INTERRUPT NO "

x ! HANDLER ENDED? ::

w o 1

oh /51423 h
|

=4r{ SEND NOTICE OF COMPLETION TO MASTER CPU I

on |] SLAVE OS 122

o D 1

US 9,092,255 B2

1

MULTI-CORE PROCESSOR SYSTEM,
COMPUTER PRODUCT, AND CONTROL
METHOD FOR INTERRUPT EXECUTION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation application of Interna-
tional Application PCT/JP2010/055711, filed on Mar. 30,
2010 and designating the U.S., the entire contents of which
are incorporated herein by reference.

FIELD

The embodiment discussed herein is related to a multicore
processor system and a control method that control execution
of an interrupt process.

BACKGROUND

Interrupt requests at a central processing unit (CPU) are
roughly classified into hardware interrupt requests and soft-
ware interrupt requests. A hardware interrupt request is an
interrupt request that peripheral equipment of a CPU makes to
the CPU. For example, when a user touches the touch screen
of'a cellular phone to carry out a fast forward operation during
reproduction of a moving picture on the cellular phone, the
touch screen makes a hardware interrupt request to the CPU.
A software interrupt request is an interrupt request caused by
a program under execution.

When a hardware interrupt request is made, the operating
system (OS) running on the CPU saves a task under execution
and immediately executes a hardware interrupt handler (inter-
rupt process) for the hardware interrupt request. The hard-
ware interrupt handler may call a software interrupt.

In a multi-core processor system, when a hardware inter-
rupt request is made to a master CPU, the master CPU gen-
erates a software interrupt request, in which case a task that is
interrupted by the software interrupt request may be assigned
to aslave CPU. When such ataskis assigned to the slave CPU,
the slave CPU executes a software interrupt handler (interrupt
process) for the software interrupt request through inter-pro-
cessor interrupt communication.

For an example of such technology, refer to Takahashi,
Hirokazu, et al, “Linux Kernel Kaidokushitsu 2.6”, Softbank
Creative Corp., Nov. 30, 2006, pp. 62-63.

Nonetheless, when a software interrupt request is gener-
ated through inter-processor interrupt communication, a soft-
ware interrupt handler of the software interrupt request is
placed in a ready-queue and awaits execution. In the ready-
queue, processes are executed in their order of queuing. Con-
sequently, a problem arises in that when numerous tasks are in
the ready-queue, the start of execution of the software inter-
rupt handler is delayed.

In other words, the time between the calling of the software
interrupt handler and the start of execution of the software
interrupt handler is longer than the time between the calling of
the hardware interrupt handler and the start of execution of
the hardware interrupt handler, resulting in a problem that the
response of the software interrupt is slow.

SUMMARY

According to an aspect of an embodiment, a multi-core
processor system includes a given configured to queue an
interrupt process of a software interrupt request to the given
core, and execute queued processes in the order of queuing at

20

25

30

35

40

45

55

60

2

the given core; execute preferentially an interrupt process of
a hardware interrupt request to the given core over a process
under execution at the given core; determine whether the
software interrupt request is a specific software interrupt
request; and perform control to preferentially execute the
interrupt process without queuing, upon determining that the
software interrupt request is the specific software interrupt
request.

The object and advantages of the invention will be realized
and attained by means of the elements and combinations
particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the invention.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1is an explanatory diagram of one example of moving
picture reproduction in progress;

FIG. 2 is an explanatory diagram of an example in which a
hardware interrupt request occurs;

FIG. 3 is an explanatory diagram of an example in which a
seek process is executed immediately;

FIG. 4 is a block diagram of a hardware configuration of a
multi-core processor system;

FIG. 5 is an explanatory diagram of one example of a
use-case table according to a first example;

FIG. 6 is a block diagram of the multi-core processor
system,

FIG. 7 is an explanatory diagram of the first example;

FIG. 8 is a first flowchart of a control procedure by the
multi-core processor system of the first example;

FIG. 9 is a second flowchart of the control procedure by the
multi-core processor system of the first example;

FIG. 10 is an explanatory diagram of one example of the
use-case table of a second example;

FIG. 11 is an explanatory diagram of a state of execution of
atask allowing an interrupt according to the second example;

FIG. 12 is a first explanatory diagram of'a state of execution
of a task not allowing an interrupt according to the second
example;

FIG. 13 is a second explanatory diagram of a state of
execution of a task not allowing an interrupt according to the
second example; and

FIG. 14 is a flowchart of a control procedure by the multi-
core processor system of the second example.

DESCRIPTION OF EMBODIMENTS

A preferred embodiment of a multicore processor system,
a control program, and a control method according to the
present invention is described in detail below with reference
to the accompanying drawings. The multicore processor of
the multicore processor system according to the present
embodiment is a processor that includes multiple cores. Pro-
vided the multicore processor includes multiple cores, the
multicore processor may be a single processor with multiple
cores or single-core processors connected in parallel. For
simplicity, single-core processors connected in parallel are
taken as an example in the present embodiment.

FIG. 1is an explanatory diagram of one example of moving
picture reproduction in progress. In FIG. 1, an example in
which a multi-core processor system 100 is a cellular phone is
described. A master CPU 101 is executing a player process as
a graphic user interface (GUI) process that is registered in a
ready-queue 141. Meanwhile, a slave CPU 102 is executing a
moving picture decoding process.

US 9,092,255 B2

3

As is commonly known, the ready-queue 141 (or ready-
queue 142)is a data structure for managing tasks that are in an
executable state. Context information of a task registered in
the ready-queue 141 (or ready-queue 142) is extracted to
execute the task. The context information is the information
indicative of the internal state of a program and the location of
a program in a memory.

FIG. 2 is an explanatory diagram of an example in which a
hardware interrupt request occurs. In FIG. 2, fast forwarding
of' a moving picture by a user causes an input/output (1/O)
device 103 (liquid crystal panel) to issue a hardware interrupt
request. When the master CPU 101 detects the hardware
interrupt request, a master OS 121 saves the player process to
the ready-queue 142, and executes a touch screen driver,
which is a hardware interrupt handler.

Subsequently, when the master OS 121 attempts to cause
the touch screen driver to execute a seek process through a
software interrupt request, the master OS 121 determines the
CPU to which a moving picture decoding process that to be
interrupted, is assigned.

In this example, the master OS 121 determines that the
moving picture decoding process is assigned to the slave CPU
102. Because the moving picture decoding process is
assigned to the slave CPU 102, the master OS 121 causes the
master CPU 101 to send through inter-processor interrupt
communication to the slave CPU 102, a software interrupt
request calling the seek process.

A hypervisor 112 monitors communication between pro-
cessors and detects the software interrupt request. When
detecting the software interrupt request, the hypervisor 112
determines whether the seek process, which is a software
interrupt handler of the software interrupt request, is a process
having a high priority level. The hypervisor 112 determines
whether the software interrupt request is a specific software
interrupt request, based on the priority level of the seek pro-
cess. In this example, the hypervisor 112 determines that the
seek process is a process having a high priority level. The
hypervisor 112 then generates a false hardware interrupt
request to the slave CPU 102. For example, a predetermined
register value corresponding to the seek process is set in a
register related to hardware interrupt in the slave CPU 102.

FIG. 3 is an explanatory diagram of an example in which
the seek process is executed immediately. When a value is set
in the register related to hardware interrupt in the slave CPU
102, the slave CPU 102 identifies the address corresponding
to the set value. A slave OS 122 running on the slave CPU 102
saves the moving picture decoding process under execution to
the head of the ready-queue 142, and jumps to the identified
address to execute the seek process.

In this manner, the seek process is executed immediately,
so that the response of a process having a high priority level is
improved. If the seek process is a process having a low pri-
ority level, the slave OS 122 queues the seek process in the
ready-queue 142 and as in a conventional case, the seek
process awaits execution.

FIG. 4is ablock diagram of a hardware configuration of the
multi-core processor system 100. In FIG. 4, the multi-core
processor system 100 includes the master CPU 101, the slave
CPU 102, a shared memory 104, and an /O device 103. These
units are interconnected via a bus 105. FIG. 1 depicts an
example where the multi-core processor system 100 is imple-
mented as a cellular phone. However, implementation of the
multi-core processor system 100 is not limited to a cellular
phone and may be a portable information terminal, such as a
cellular phone and a electronic book reader device, and a
personal computer.

30

35

40

45

50

55

4

The master CPU 101 and the slave CPU 102 respectively
have a core, a register, and cache. The register of each CPU
has a register related to hardware interrupt (hereinafter “hard-
ware interrupts register””). When a value is set in the hardware
interrupt register, the address of an interrupt process is iden-
tified based on the set value, and the CPU jumps to the address
to immediately execute the interrupt process.

Each CPU has an interrupt vector table, in which the cor-
responding relation between values in the register and
addresses of the interrupt processes are described. In a hard-
ware interrupt request, a value corresponding to the hardware
interrupt request is set in the hardware interrupt register.
When a value is set in the hardware interrupt register of a
CPU, the CPU searches the interrupt vector table for the set
value and identifies the address corresponding to the set
value. The CPU then jumps to the identified address.

Inthe examples, the interrupt vector table includes not only
addresses of the hardware interrupt process but also addresses
of'the software interrupt process. In the interrupt vector table,
a value that can be set in the hardware interrupt register is
determined in advance for each hardware interrupt request
and software interrupt process.

The master CPU 101 executes the hypervisor 111 and the
master OS 121, and carries out overall control over of the
multi-core processor system 100. The master OS 121 has a
scheduler 131 that determines to which CPU a task is to be
assigned and controls task switching at the master CPU 101.
The slave CPU 102 executes the hypervisor 112 and slave OS
122. The slave OS 122 has a scheduler 132 that controls task
switching at the slave CPU 102.

The hypervisor 111 and the hypervisor 112 are programs
that operate directly on hardware, i.e., the master CPU 101
and the slave CPU 102, and that are stored in registers in the
hardware. The hypervisor 111 is able to execute a privileged
command to directly refer to the master CPU 101, to read
information out of the register in the master CPU 101, or to
rewrite information in the register in the master CPU 101. The
hypervisor 112 is able to execute a privileged command to
directly refer to the slave CPU 102, to read information out of
the register in the slave CPU 102, or to rewrite information in
the register in the slave CPU 102.

The I/O device 103 is a device that the user is able to
operate directly or to operate via a network. For example, the
1/O device 103 is provided as a keyboard, a liquid crystal
touch panel, a mouse, etc. For example, the /O device 103 in
the form of a keyboard has keys for entering characters,
figures, and various instructions, and is used to input data. The
1/0 device 103 in the form of a liquid crystal touch screen is
used to input data and output characters, figures, images, etc.

The shared memory 104 is memory shared by the multi-
core processor, and stores a process table 151 and a use-case
table 500. For example, the shared memory 104 includes
read-only memory (ROM), random access memory (RAM),
and flash ROM.

For example, the flash ROM stores programs of each OS;
the ROM stores application programs, and the RAM is used
as a work area for the master CPU 101 and the slave CPU 102.
A program stored in the shared memory 104 is loaded onto
each CPU to cause the CPU to execute a coded process.

The process table 151 is information indicating to which
CPU a task is assigned and which task a CPU is executing.
After startup, each OS reads out the contents of the process
table 151 and stores the read contents to the cache of the
respective CPU. Having assigned a task, the scheduler 131
enters the assigned task into the process table 151. When task
switching occurs, each scheduler enters into the process table
151, information indicating which task has entered a state of

US 9,092,255 B2

5

execution. Having rewritten contents of the process table 151,
each scheduler executes a snoop process to update each pro-
cess table 151 stored in the cache of each CPU. The use-case
table 500 will be described with reference to FIG. 5.

FIG. 5 is an explanatory diagram of one example of the
use-case table 500 according to a first example. The use-case
table 500 includes information indicating for each function,
whether the function is forcibly executed during an interrupt
and that whether an interrupt is allowed during execution of
the function. For example, FuncA is described as “forced
jump” and FuncB is described as “handler process”. When
the FuncA is called as a software interrupt, the multi-core
processor system 100 executes the FuncA immediately.
When the FuncB is called as a software interrupt, the multi-
core processor system 100 registers the FuncB with the ready-
queue 142.

In the embodiments, a function described as “forced jump”
represents a process of which the priority level is high, and a
function described as “handler process™ represents a process
of which the priority level is not high (is low).

One example of an interrupt process having a high priority
level is an interrupt process associated with a specific hard-
ware interrupt request. For example, the seek process
depicted in FIG. 3 is an interrupt process associated with the
touch screen driver. A specific hardware interrupt request is,
for example, a hardware interrupt request generated by a user
operation. User operations include, for example, an operation
on the touch screen, on the keyboard, of the mouse, etc.

The use-case table 500 is made in advance by a designer
when the designer designs application software. A process to
which the designer wants to give high priority, therefore, may
be entered in the use-case table 500, as a process having a high
priority level.

The address of a function described as “forced jump”,
which is information indicating whether the function is forc-
ibly executed during an interrupt, in the use-case table 500 is
entered into the interrupt vector table. The use-case table 500
is stored to the cache of each CPU as soon as the multi-core
processor system 100 is started.

FIG. 6 is a block diagram of the multi-core processor
system 100. Each CPU of the multi-core processor system
100 includes a first executing unit 601, a second executing
unit 602, a request determining unit 603, a priority determin-
ing unit 604, and an execution controller 605. Each of these
units (first executing unit 601 to execution controller 605) is
capable of, for example, causing each CPU to execute a
program stored in the shared memory 104. The first and
second executing units 601 and 602 are programs installed in
OS running on each CPU (master OS 121 and slave OS 122 in
the examples). The request determining unit 603, the priority
determining unit 604, and the execution controller 605 are
programs installed in the hypervisor running on each CPU
(hypervisor 111 and hypervisor 112 in the embodiments).

The first executing unit 601 causes a software interrupt
handler of a software interrupt request to be queued, and
executes queued processes in the order of queuing.

The second executing unit 602 preferentially executes a
software interrupt handler of a hardware interrupt request
over a process under execution.

The request determining unit 603 determines whether a
software interrupt request is a specific software interrupt
request. In the embodiments, whether a software interrupt
request is a specific software interrupt request is determined
based on a determination on whether a software interrupt
handler of the software interrupt request is a process having a
high priority level.

20

40

45

55

60

6

When the request determining unit 603 determines that a
software interrupt request is a specific software interrupt
request, the execution controller 605 does not cause the first
executing unit 601 to put a software interrupt handler of the
software interrupt request in a stand-by state but causes the
second executing unit 602 to execute the software interrupt
handler preferentially.

When the request determining unit 603 determines that a
software interrupt request is a specific software interrupt
request, the priority determining unit 604 determines whether
aprocess under execution permits preferential execution of a
software interrupt handler of the software interrupt request
over the process under execution, based on a given criterion.

When the priority determining unit 604 determines that a
process under execution does not permit preferential execu-
tion of a software interrupt handler for a software interrupt
request over the process under execution, the execution con-
troller 605 causes the second executing unit 602 to preferen-
tially execute the software interrupt handler of the software
interrupt request after the process under execution is ended or
when task switching occurs.

In addition to the above description, first and second
examples will be described in detail with reference to the
drawings. The first example relates to an example in which
based on whether a software interrupt handler called through
inter-processor interrupt communication is a function having
ahigh priority level, whether the software interrupt handler is
executed immediately or caused to stand by, is determined.
The second example relates to an example in which based on
whether a task under execution permits an interrupt, whether
a software interrupt handler is executed immediately or is
executed after the task under execution is ended or when task
switching occurs, is determined.

FIG. 7 is an explanatory diagram of the first example. (1)
When a hardware interrupt request is made to the master CPU
101 via the /O device 103, the master OS 121 (2) immedi-
ately saves a task A being executed on the master CPU 101.

The master OS 121 then (3) executes a hardware interrupt
handler of the hardware interrupt request. The master OS 121
uses the process table 151 and identifies the CPU to which the
task interrupted by a software interrupt handler called by the
hardware interrupt handler is assigned. In this example, the
interrupted task is a task B, and the slave CPU 102 is identi-
fied as the CPU to which the task B is assigned. The master
0S 121 (4) then sends a software interrupt request to the slave
CPU 102 through inter-processor interrupt communication.

Thehypervisor 112 monitors communication between pro-
cessors, and detects the software interrupt request. Upon
detecting the software interrupt request, the hypervisor 112
searches the use-case table 500 to locate a software interrupt
handler of the detected software interrupt request, and deter-
mines whether the software interrupt handler is a process
having a high priority level. In this example, the software
interrupt handler is a process having a high priority level.

Upon determining that the software interrupt handler is a
process having a high priority level, the hypervisor 112 (5)
generates a false hardware interrupt request to the slave CPU
102. Generation of a false hardware interrupt request by the
hypervisor 112 means, for example, that the hypervisor 112
sets a value corresponding to the software interrupt handler in
the hardware interrupt register in the register of the slave CPU
102. The slave CPU 102 identifies the address corresponding
to the set value, using the interrupt vector table. The slave OS
122 then (6) saves the task B, which is under execution, to the
head of the ready-queue 142, and (7) jumps to the identified
address to execute the software interrupt handler.

US 9,092,255 B2

7

FIGS. 8 and 9 are flowcharts of a control procedure by the
multi-core processor system 100 of the first example. These
flowcharts describe a case where a hardware interrupt request
is generated at the master CPU 101. The master CPU 101
detects a hardware interrupt request (step S801), and the
master OS 121 running on the master CPU 101 interrupts a
task under execution and saves the task to the ready-queue
141 (step S802). The master OS 121 then executes a hardware
interrupt handler of the hardware interrupt request (step
S803), and using the process table 151, identifies a CPU to
which the interrupted task is assigned (step S804).

The master OS 121 then determines whether the identified
CPU is the master CPU 101 (step S805). If the identified CPU
is the master CPU 101 (step S805: YES), the master OS 121
executes a normal interrupt process (step S806). If the iden-
tified CPU is not the master CPU 101 (step S805: NO), the
master OS 121 carries out inter-processor interrupt commu-
nication with the identified CPU (step S807). In this inter-
processor interrupt communication, a software interrupt
request including added information concerning a function be
called is sent to the identified CPU.

Meanwhile, the hypervisor 112 running on the slave CPU
102 monitors communication between processors, and deter-
mines whether inter-processor interrupt communication has
been detected (step S808). The hypervisor 112 detects only
the inter-processor interrupt communication with the slave
CPU 102. If the hypervisor 112 determines that inter-proces-
sor interrupt communication has not been detected (step
S808: NO), the procedure returns to step S808. In this man-
ner, the hypervisor 112 constantly monitors communication
between processors to detect inter-processor interrupt com-
munication.

It the hypervisor 112 determines that inter-processor inter-
rupt communication has been detected (step S808: YES), the
hypervisor 112 uses the use-case table 500 and determines
whether a software interrupt handler of the software interrupt
request is a process having a high priority (step S809). Upon
determining that the software interrupt handler of the soft-
ware interrupt request is a process having a high priority (step
S809: YES), the hypervisor 112 sets a value for the software
interrupt request in the hardware interrupt register of the slave
CPU 102 (step S810).

As a result of setting the value in the hardware interrupt
register, the slave CPU 102 detects a hardware interrupt
request (step S811). Although the detected hardware interrupt
request is actually the software interrupt request, the slave
CPU 102 merely detects the value set in the hardware inter-
rupt register and makes no determination on whether the
value represents the hardware interrupt request. The slave OS
122 running on the slave CPU 102 interrupts the task under
execution and saves the task to the ready-queue 142 (step
S812). The slave OS 122 then executes the software interrupt
handler of the software interrupt request (step S813), and the
procedure proceeds to step S817.

When the hypervisor 112 determines that the software
interrupt handler of the software interrupt request is not a
process having a high priority (step S809: NO), the hypervi-
sor 112 sends the software interrupt request to the slave OS
122 (step S814). The hypervisor 112 sending the software
interrupt request means that the hypervisor 112 sends an
instruction to place the software interrupt request in the
ready-queue 142 to cause the software interrupt request to be
queued. Receiving the notice, the slave OS 122 registers the
software interrupt handler into the ready-queue 142 (step
S815), and executes processes in the ready-queue 142 in the
order of registration to execute the software interrupt handler
(step S816).

10

15

20

25

30

35

40

45

50

55

60

65

8

Following step S813 or S816, the slave OS 122 determines
whether the software interrupt handler has ended (step S817).
If the slave OS 122 determines that the software interrupt
handler is not ended (step S817: NO), the procedure returns to
step S817. If the slave OS 122 determines that the software
interrupt handler is ended (step S817: YES), the slave OS 122
sends a notice of completion of the software interrupt handler
to the master CPU 101 (step S818).

In the examples, the hypervisor 112 running on the slave
CPU 102 constantly monitors communication between pro-
cessors to detect inter-processor interrupt communication.
However, for example, the hypervisor 111 running on the
master CPU 101 may send a notice of execution of inter-
processor interrupt communication to the hypervisor 112 run-
ning on the CPU 102 right before execution of the inter-
processor interrupt communication and then execute the
inter-processor interrupt communication. This allows the
hypervisor 112 running on the CPU 102 to detect inter-pro-
cessor interrupt communication without constantly monitor-
ing communication between processors.

The second example relates to a case where whether a
software interrupt handler with a high priority level is
executed immediately or executed after a task under execu-
tion is ended or when task switching occurs is determined,
based on whether the task under execution permits an inter-
rupt.

In the second example, if a task under execution does not
permit an interrupt, a flag indicating whether the task under
execution is ended or task switching occurs is set as Process
ID. Process ID=0 indicates a task is under execution, and
Process ID=1 indicates that a task under execution has ended
or that task switching occurs.

FIG. 10 is an explanatory diagram of one example of the
use-case table of the second example. A use-case table 1000
has information indicating for each function, whether the
function is forcibly executed during an interrupt and whether
an interrupt is allowed during execution of the function, and
information indicating for each task, whether an interrupt is
allowed during execution of the task. For example, the FuncA
is described as “forced jump” and “interrupt not allowed”,
and the FuncB is described as “handler process™ and “inter-
rupt allowed”.

For example, the task A is described as “-”” and “interrupt
allowed”, the task B is described as “-” and “interrupt
allowed”, and the task C is described as “-” and “interrupt not
allowed”. In the examples, only the function is called as the
interrupt handler. For this reason, information concerning
whether the task is forcibly executed during an interrupt is not
described for the task A and the task B.

For example, when a software interrupt occurs during
execution of the task A, the task A is saved and a software
interrupt handler is called to be executed because the infor-
mation concerning the task A indicating whether an interrupt
is allowed during execution of the task A is “interrupt is
allowed”. In contrast, the information concerning the task C
indicating whether an interrupt is allowed during execution of
the task C is “interrupt is not allowed”. When a software
interrupt occurs during execution of the task C, therefore, a
software interrupt handler is called and executed after execu-
tion of the task C has ended or when task switching occurs. In
the second example, the use-case table 1000 is stored in the
shared memory 104. The use-case table 1000 may be stored to
the cache of each CPU as soon as the multi-core processor
system 100 is started.

FIG. 11 is an explanatory diagram of a state of execution of
atask allowing an interrupt according to the second example.
In FIG. 11, a task subject to a software interrupt called by a

IT3ELS

US 9,092,255 B2

9

hardware interrupt handler is the task B. (1) When a hardware
interrupt request is generated at the master CPU 101, the
master OS 121 (2) interrupts and saves the task A to the
ready-queue 141, and (3) executes a hardware interrupt han-
dler of the hardware interrupt request. The master OS 121
identifies the CPU to which the task B that was interrupted by
a software interrupt handler called by the hardware interrupt
handler is assigned. In this example, since the task B is being
executed at the slave CPU 102, the slave CPU 102 is identi-
fied.

The master OS 121 sends a software interrupt request to the
slave CPU 102 through inter-processor interrupt communi-
cation. The hypervisor 112 monitors communication
between processors and detects the inter-processor interrupt
communication made by the slave CPU 102. The hypervisor
112 then uses the use-case table 1000 and determines whether
the software interrupt handler of the software interrupt
request is a process having a high priority level. In this
example, the software interrupt handler of the software inter-
rupt request is a process having a high priority level.

Subsequently, the hypervisor 112 identifies a task under
execution, uses the use-case table 1000 and determines
whether the task under execution allows preferential execu-
tion of an interrupt process over the task under execution. In
this example, the task B is determined to be a task allowing an
interrupt.

If the task B is determined to be a task allowing an inter-
rupt, the hypervisor 112 (5) generates a false hardware inter-
rupt request at the slave CPU 102, i.e., sets a value corre-
sponding to the software interrupt request in the hardware
interrupt register. The slave CPU 102 then detects the value
set in the hardware interrupt register and thereby, detects the
hardware interrupt request. The slave OS 122, thus, (6) saves
the task B under execution to the ready-queue 142, and (7)
executes the software interrupt handler of the software inter-
rupt request.

FIG. 12 is afirst explanatory diagram of a state of execution
of a task not allowing an interrupt according to the second
example. In FIG. 12, a task subject to a software interrupt
called by a hardware interrupt handler is the task C. Processes
indicated by (1) to (4) in FIG. 12 are the same as those
indicated by (1) to (4) in FIG. 11, and are therefore omitted in
further description.

The hypervisor 112 monitors communication between pro-
cessors and detects inter-processor interrupt communication
to the slave CPU 102. The hypervisor 112 then identifies a
task under execution, and determines whether the task C,
which is under execution, is a task allowing an interrupt. The
task C is determined to be a task that does not allow an
interrupt. The hypervisor 112 then (5) sets the Process ID to 0.
The slave OS 122 uses the process table 151 and determines
whether the task C has ended or task switching occurs.

FIG. 13 is a second explanatory diagram of a state of
execution of a task not allowing an interrupt according to the
second example. (6) If the task C has ended or task switching
occurs, the slave OS 122 detects the end of the task C, and (7)
sets the Process ID to 1. The hypervisor 112 (8) detects the
change in the value of the Process ID from 0 to 1, and gener-
ates a false hardware interrupt request to the slave CPU 102.
When the false hardware interrupt request is generated, the
slave OS 122 (9) executes a software interrupt handler.

FIG. 14 is a flowchart of a control procedure by the multi-
core processor system 100 of the second example. The pro-
cess carried out by the master CPU 101 is the same as the
control procedure by the multi-core processor system 100 of
the first example depicted in FIG. 8, and is therefore omitted
in further description. In this flowchart, the procedure is

10

15

20

25

30

35

40

45

50

55

60

10

described for a case where the master CPU 101 makes inter-
processor interrupt communication with the slave CPU 102.
The process carried out by the master CPU 101 is represented
as steps 51401 to S1407 (identical to steps 5801 to 807 of FIG.
8).

The hypervisor 112 running on the slave CPU 102 moni-
tors communication between processors, and determines
whether inter-processor interrupt communication has been
detected (step S1408). If the hypervisor 112 determines that
inter-processor interrupt communication has not been
detected (step S1408: NO), the procedure returns to step
S1408. In this manner, the hypervisor 112 constantly moni-
tors communication between processors to detect inter-pro-
cessor interrupt communication.

Ifthe hypervisor 112 determines that inter-processor inter-
rupt communication has been detected (step S1408: YES), the
hypervisor 112 uses the use-case table 1000 and determines
whether a software interrupt handler for a software interrupt
request is a process having a high priority level (step S1409).
Upon determining that the software interrupt handler is a
process having a high priority level (step S1409: YES), the
hypervisor 112 determines whether the task under execution
is a process allowing an interrupt (step S1410).

Ifthe hypervisor 112 determines that the task under execu-
tion is not a process allowing an interrupt (step S1410: NO),
the Process ID is set to O (step S1411). The slave OS 122 then
determines whether the task under execution has ended or
task switching has occurred (step S1417). If the slave OS 122
determines that the task is still under execution (step 1417:
NO), the procedure returns to step S1413. Ifthe slave OS 122
determines that the task under execution has ended or task
switching has occurred (step S1417: YES), the Process ID is
set to 1 (step S1418).

Following step S1411, the hypervisor 112 determines
whether the Process ID is 1 (step S1412). If the hypervisor
112 determines that the Process ID is not 1 (step S1412: NO),
the step S1412 is carried out again. If the hypervisor 112
determines that the Process ID is 1 (step S1412: YES), hyper-
visor 112 sets a value for the software interrupt request in the
hardware interrupt register (step S1413).

Subsequently, the slave CPU 102 detects a hardware inter-
rupt request (step S1414), and the slave OS 122 interrupts and
saves the task under execution to the ready-queue 142 (step
S1415). The slave OS 122 then executes the software inter-
rupt handler (step S1416), after which the procedure proceeds
to step S1420.

Upon determining that the software interrupt handler is not
a process having a high priority level at step S1409 (step
S1409: NO), the hypervisor 112 sends a software interrupt
request to the slave OS 122 (step S1419). The slave OS 122
places the software interrupt handler in the ready-queue 142
to queue the software interrupt handler (step S1420), and
executes queued processes in the order of queuing to execute
the software interrupt handler (step S1421).

Following step S1416 or S1421, the slave OS 122 deter-
mines whether the software interrupt handler has ended (step
S1422). If the slave OS 122 determines that the software
interrupt handler has not ended (step S1422: NO), the proce-
dure returns to step S1420. If determining that the software
interrupt handler has ended (step S1422: YES), the slave OS
122 sends a notice of completion of the software interrupt
handler to the master CPU 101 (step S1423).

As described above, according to the multi-core processor
system, the control program, and the control method, an
interrupt process of a specific software interrupt request is not

US 9,092,255 B2

11

caused to queue but is executed preferentially over a process
under execution. As a result, the response of an interrupt is
speeded up.

When a specific software interrupt request is a software
interrupt request related to a specific hardware interrupt
request, the response of an interrupt from an external device
is speeded up.

When a specific hardware interrupt request is a hardware
interrupt request generated by a user operation, the response

5

of an interrupt by a user operation is speeded up, thereby 10

allowing the user to operate the system without to the frus-
tration of a slow response.

When a process under execution does not allow preferen-
tial execution of an interrupt process of a software interrupt
request over the process under execution, the interrupt pro-
cess is executed after the process under execution has ended
or when task switching occurs. As a result, the response of an
interruptis speeded up without interrupting the process under
execution and having a high priority level.

All examples and conditional language provided herein are
intended for pedagogical purposes of aiding the reader in
understanding the invention and the concepts contributed by
the inventor to further the art, and are not to be construed as
limitations to such specifically recited examples and condi-
tions, nor does the organization of such examples in the
specification relate to a showing of the superiority and infe-
riority of the invention. Although one or more embodiments
of the present invention have been described in detail, it
should be understood that the various changes, substitutions,
and alterations could be made hereto without departing from
the spirit and scope of the invention.

What is claimed is:

1. A multi-core processor system comprising a given core
configured to:

queue an interrupt process of a software interrupt request to

the given core, and execute queued processes in an order
of queuing at the given core;

execute preferentially an interrupt process of a hardware

interrupt request to the given core over a process under
execution at the given core;

determine whether the software interrupt request is a spe-

cific software interrupt request; and

perform control to preferentially execute the interrupt pro-

cess without queuing, upon determining that the soft-
ware interrupt request is the specific software interrupt
request.

2. The multi-core processor system according to claim 1,
wherein

the specific software interrupt request is a software inter-

rupt request related to a specific hardware interrupt
request.

3. The multi-core processor system according to claim 2,
wherein

15

25

30

35

40

45

50

12

the specific hardware interrupt request is a hardware inter-

rupt request generated by a user operation.

4. The multi-core processor system according to claim 1,
the given core configured to determine based on a given
criterion, whether the process under execution allows prefer-
ential execution of the interrupt process of the software inter-
rupt request over the process under execution, upon determin-
ing the software interrupt request to be the specific software
interrupt request, wherein

the given core, upon determining that the process under

execution does not allow preferential execution of the
interrupt process of the software interrupt request over
the process under execution, causes the interrupt process
of the software interrupt request to be executed prefer-
entially after the process under execution at the given
core has ended or when process switching is carried out.

5. A non-transitory computer-readable recording medium
storing a program for a multi-core processor system that
includes a given core comprising:

a first executor configured to queue an interrupt process of

a software interrupt request to the given core, and to
execute queued processes in an order of queuing at the
given core; and

a second executor configured to execute preferentially an

interrupt process of a hardware interrupt request to the
given core over a process under execution at the given
core, wherein the program causes the given core to
execute:

determining whether the software interrupt request is a

specific software interrupt request; and

causing the second executor to preferentially execute the

interrupt process without queuing, upon determining
that the software interrupt request is the specific soft-
ware interrupt request.

6. A control method executed by a given core in a multi-
core processor system, the control method comprising:

queuing, by a first executor, an interrupt process of a soft-

ware interrupt request to the given core, and executing
queued processes in an order of queuing at the given
core; and

executing, by a second executor, preferentially an interrupt

process of a hardware interrupt request to the given core
over a process under execution at the given core, wherein
the given core executes:

determining whether the software interrupt request is a

specific software interrupt request; and

causing the second executor to preferentially execute the

interrupt process without queuing, upon determining
that the software interrupt request is the specific soft-
ware interrupt request.

#* #* #* #* #*

